Bayesian transformation hazard models

نویسندگان

  • Gousheng Yin
  • Joseph G. Ibrahim
چکیده

We propose a class of transformation hazard models for rightcensored failure time data. It includes the proportional hazards model (Cox) and the additive hazards model (Lin and Ying) as special cases. Due to the requirement of a nonnegative hazard function, multidimensional parameter constraints must be imposed in the model formulation. In the Bayesian paradigm, the nonlinear parameter constraint introduces many new computational challenges. We propose a prior through a conditional-marginal specification, in which the conditional distribution is univariate, and absorbs all of the nonlinear parameter constraints. The marginal part of the prior specification is free of any constraints. This class of prior distributions allows us to easily compute the full conditionals needed for Gibbs sampling, and hence implement the Markov chain Monte Carlo algorithm in a relatively straightforward fashion. Model comparison is based on the conditional predictive ordinate and the deviance information criterion. This new class of models is illustrated with a simulation study and a real dataset from a melanoma clinical trial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Bayesian shared gamma frailty models with multivariate failure time data.

For multivariate failure time data, we propose a new class of shared gamma frailty models by imposing the Box-Cox transformation on the hazard function, and the product of the baseline hazard and the frailty. This novel class of models allows for a very broad range of shapes and relationships between the hazard and baseline hazard functions. It includes the well-known Cox gamma frailty model an...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

A general class of Bayesian survival models with zero and nonzero cure fractions.

We propose a new class of survival models which naturally links a family of proper and improper population survival functions. The models resulting in improper survival functions are often referred to as cure rate models. This class of regression models is formulated through the Box-Cox transformation on the population hazard function and a proper density function. By adding an extra transforma...

متن کامل

Nonparametric Bayesian hazard rate models based on penalized splines

Extensions of the traditional Cox proportional hazard model, concerning the following features are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and usual fixed covariate effects, modelling and detection of time–varying covariate effects and nonlinear functional forms of metrical covariates, and inclusion of frailty components. In this paper, we devel...

متن کامل

Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches

This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006